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Abstract. The temperature evolution of discommensurations (DC) during the heating run 
through the commensurate-incommensurate (c-I) transition in barium sodium niobate is 
investigated by means of transmission electron microscopy. It is found that the interaction 
of DC is attractive over considerable distances, and that frozen-in DC become meandering 
and collide with each other in the process of reducing the DC density under the influence of 
thermal fluctuations at a temperature below the lock-in transition. A transient metastable 
state (or chaotic state) is observed with successive nucleation of DC in the early stages of 
transition, and later a wavy DC array is formed. DC loops with high density of DC are formed 
at a temperature above the c-I transition. A qualitative theoretical explanation of the 
observed characteristics on the evolution of DC is presented based on a Landau theory. 

1. Introduction 

The existence of a multi-soliton lattice in the low-temperature part of incommensurate 
(I) phases is now well established. Locally commensurate (c) regions are separated by 
discommensurations (DC) where the phase and amplitude of the modulation wave change 
abruptly [l, 21. The commensurate-incommensurate (c-I) transition at temperature TL 
is predicted to be continuous in the constant-amplitude approximation, but may become 
discontinuous if amplitude variations or additional degrees of freedom coupled to the 
order parameter are taken into account in the thermodynamic potential [3]. It is generally 
believed that transformation during the c-I transition proceeds through nucleation or 
annihilation of DC. In the vicinity of TL the discreteness of the crystal lattice and the 
influence of extrinsic defects may become important and may induce an intermediate 
regime where the states are spatially chaotic. In the following work an experimental 
study of such processes in barium sodium niobate (BSN) and some qualitative theoretical 
interpretations of their underlying mechanism are presented. 

Some of the main features of the system studied are briefly summarised. An intricate 
pattern of phase transitions has been observed in BSN, and is schematically displayed in 
table 1. A standard ferroelectric transition (P4/mbm-P4bm) occurs at about 580 "C [4]. 
Two transitions separated by about 50 "Care located near 250 and 300 "C and bound the 
I phase possessing an average orthorhombic point symmetry [5,6]. This point symmetry 
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persists down to - 160 "C where another transformation restores tetragonal symmetry 
[7]. According to electron microscopic observations [8-lo], the DC in incommensurate 
BSN are irregularly distributed in space with an average direction perpendicular to 
modulation [&lo]. The lenticularly shaped nuclei of DC are generated at a temperature 
slightly above TL, and grow in size with increasing temperature [ l l ] .  Other phenomena 
related to the presence of the I phase but departing from the standard behaviour expected 
for incommensurate systems had been noticed [6,12], such as a large thermal hysteresis 
of a specific type, slow time-relaxation processes and a 'memory effect'. These pheno- 
mena are currently assigned [12] to the occurrence of an interaction between the incom- 
mensurate modulation and mobile point defects. The occurrence of pinning on the DC 
pattern by stoichiometric defects and defects induced by electron-beam irradiation have 
recently been studied by transmission electron microscopy [lo,  13-15]. Obviously, it is 
an interesting problem to study how the pinned DC affect the GI  transition and the 
evolution of DC in temperature and time if the system is thermally cycled through the 
c-I transition. The present investigations contribute to an understanding of such aspects. 
We have examined the patterns of DC in BSN between ambient temperature and the 
normal-incommensurate (N-I) transition (-300 "C) by transmission electron micro- 
scopy (TEM) and attempted a theoretical interpretation of the underlying mechanisms. 

The plan of the paper is as follows. In section 2 the experimental procedure is briefly 
described and in section 3 the experimental results obtained by transmission electron 
microscopy are presented. In section 4 the results obtained in section 3 are considered 
from the perspective of a qualitative theory of the C-I phase transition. Conclusions and 
an outlook are presented in section 5. 

2. Experimental methods 

The single crystals of BSN used had the same origin as those studied in the previous 
experiments [8, 111. Disc-shaped samples with (00 1) orientation (3 mm diameter and 
0 . 1 0 4 1 5  mm thick) were mechanically polished to a thickness of about 30ym, and 
were thinned further to about 100 nm by Ar' ion bombarding at an operating voltage of 
6 kV at an incident angle of about 12". In situ observations were achieved with a JEOL 
JEM-200CX electron microscope at an accelerating voltage of 200 kV, using a side-entry 
hot stage. 

3. Results 

Dark-field images of DC in BSN obtained at different temperatures by selecting incom- 
mensurate-satellite reflections during several thermal cycles starting from ambient 
temperature have been observed (figure l), displaying a similar type of pattern as 
described in several recent TEM observations of BSN [8-10, 141. The patterns have the 
form of wavy lines, generally directed along either [ 1 1 01 or [ 17 01 corresponding to 
different ferroelastic domains (referred to the axes of the normal tetragonal phase), 
although the regularity observed in each domain is poor. In the following we will refer 
to such structures as wavy DC patterns. It is easily deduced from figure l(a) that frozen- 
in DC tend to run close to each other, producing a filamentary structure, so that there is 
no regular DC lattice to be observed. A similar characteristic can also be observed in the 
configurations of newly generated DC at a temperature slightly above TL,  as shown in 
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Figure 1. Dark-field micrographs 
obtained by selecting incommen- 
surate satellite reflections taken at 
different temperatures. (a )  Ambi- 
tnt temperature. ( b )  At about 
230°C. It clearly shows that both 
frozen-in DC (a )  and newly gen- 
erated DC ( b )  tend to run close to 
eachother, implying that there isan 
attractive interaction between 
neighbouring DC in BSN. 

figure l ( b )  (figure 2 in [ l l ] ) .  As was pointed out in [ l l ] ,  the lenticularly shaped nuclei 
of DC can easily extend in the direction perpendicular to the modulation wavevector, 
but hardly parallel to this direction. Thus, it is plausible to assume that the DC in BSN 
have an attractive interaction over a considerable distance, which may result in the c-I 
transition being discontinuous [ 3 ] .  (The attractive or repulsive interaction of DC has two 
origins and will be discussed in section 4.) This is consistent with the experimental 
observations on the GI transition by means of different methods [8, 121, and with the 
phenomenological description of the c-I transition [ 3 ] ,  where the coupling of the order 
parameter to the strain tensor in the thermodynamic potential was considered. 

The temperature evolution of pinned (or frozen-in) DC from ambient temperature 
to about 230°C is shown in figures 2(a)-(c). As was reported previously [8, 111,  the 
configurations of pinned DC (figure 2(a))  undergo no apparent change during the heating 
run up to about 200 "C. Two remarkable features of the frozen-in DC structure are worth 
mentioning. First, there are four-fold sources and sinks, depending on sign conventions, 
where DC emanate or vanish. These will be called vortices in the following. The set of 
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Figure 2. Dark-field micrographs 
taken at different temperatures in 
the same area of a sample show the 
evolution of frozen-in DC under the 
influence of thermal fluctuations. 
(a )  Ambient temperature. (h) At 
210°C. Note that DC become 
meandering (or roughening) with 
increasing temperature and 
undergo collisions with their neigh- 
bours, which leads to their annihil- 
ation or  fusion. (c) At 230°C. Note 
the nucleation of DC as black drop- 
lets in (c). 
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vortices is connected by DC in an irregular fashion and thus suspends a multiconnected 
network similar to that in vulcanised rubber. Secondly, DC connecting two vortices are 
not straight but curved and some are irregularly shaped. From the first feature it follows 
that the network of DC cannot easily annihilate due to topological obstructions, whereas 
the second feature implies that DC are locally pinned and not only suspended by the 
vortices. Owing to the finite size of the specimens studied the DC will in reality be 
membrane-shaped and are suspended by vortex segments. Accordingly in the following 
we will refer to the DC also as domain walls. 

With the temperature rising further and approaching 230 "C, a strong influence of 
thermal fluctuations on pinned DC patterns is observed. Figure 2(b) was taken at about 
210 "C in the same area as in figure 2(a), and figure 2(c) at a temperature slightly above 
230 "C. Figure 3(a) shows schematically the phase change of the DC in the upper left- 

Figure 3. Schematic plot of pro- 
cesses of DC collision occurring in 
the region marked by a box in the 
upper left-hand side of figure 2(a) .  
Here (a) and ( b )  illustrate that two 
segments (AB and CD) of DC with 
opposite orientations annihilate 
after their collision. (c) This shows 

, L \  

a vortex and the four DC emanating 
from it. The numbers refer to the 
phase of the order parameter in the 
respective domain. The arrows 
indicate the orientation of DC as 
explained in the text. ( d )  and (e) DC 
with the same sign of phase change 
or say the same orientation can also 
contact each other along finite seg- 
ments under the influence of ther- 
mal fluctuations. 

I O 1  

hand side of figure 2(a). Accordingly, the sign of DC is conveniently (for practical 
purposes) defined in such a way that it is positive for one having a positive phase jump 
passing through it along the modulation direction, and negative for that (anti-soliton) 
having a negative phase jump. More accurately we define the charge of a vortex as 
CT = A q / 2 n ,  where Ap) is the phase change experienced by an observer upon sur- 

Figure 4 (opposite). Dark-field micrographs, taken at different temperatures in the same 
area of a sample, show the dynamic evolution of newly created DC in BSN. (a) At ambient 
temperature. Note the configuration of frozen-in DC which are randomly distributed due to 
strong pinning by defects. (b )  At about 230 "C. Note the appearance of DC nuclei as dark 
objects (orwhite, dependingon theconditionofimaging). (c)Takenat thesame temperature 
as ( b ) ,  but several minutes later. ( d )  and ( e )  Taken at about 250 "C several minutes apart. 
Note that ( e )  shows clearly the wavy DC array. cf) At about 260 "C. The time evolution of DC 
takes place in the form of growth of DC nuclei towards their thermal equilibrium configur- 
ation, and the temperature evolutionofDcoccurs over anincrease ofDCdensityon increasing 
the temperature. The nucleation and distribution Of DCin the sample isinhomogeneous, and 
is accompanied by a large thermal hysteresis of DC density, which results in the existence of 
metastable states (chaotic state). 
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rounding the vortex anticlockwise. Vortices (+) and antivortices (-) are produced or 
annihilated pairwise. DC emanate from vortices (+) and flow into antivortices (-). This 
provides DC with a natural orientation indicated by an arrow in figure 3. DC with opposite 
orientation can annihilate but DC with the same orientation cannot. 

It is noticed from figures 2(a)  and ( b )  that DC become wandering (or roughening) 
under the influence of thermal fluctuations and collide with their neighbours. The 
collisions lead to two different final states depending on whether the DC in contact have 
the same or opposite signs of phase change or,  say, orientation, as shown schematically 
in figures 3(a)-(e). Figures 3(u)  and ( b )  show that two pieces (AB and CD) of DC with 
opposite orientations annihilate after their collision, but DC having the same signs 
can contact or cross each other along finite segments under the influence of thermal 
fluctuations, as shown in figures 3(c)-(e). 

The number density per unit time of collisions between DC increases with increasing 
temperature. As a result, some DC loops can be observed, as shown in the lower left- 
hand side of figure 2(b) .  This process may be the reason for the weak dip of the 6 curve 
versus temperature below 230 "C given in [6] .  As a consequence, the collision of DC 
reduces the configurational entropy via a reduction of the density of DC, and therefore 
the value of 6 proportional to the density of DC will decrease with increasing temperature. 
Because the wall-wandering fluctuations have insignificant effects for small 6 in three- 
dimensional systems [16, 171 and because the density of DC with negative phase jumps, 
resulting from the rare occurrence of re-entrant DC configuration as shown in figure 5 in 
[18], is low, S exhibits only a slight fall during heating below 230 "C. When reaching a 
temperature just above TL, nuclei of DC were observed (figure 2(c ) ) ,  which were studied 
in detail in a previous paper [ 111. 

The evolution of newly created DC in BSN during the heating run is demonstrated in 
figures 4(u)-(f). Figure 4(u)  is taken at ambient temperature and shows the configuration 
of frozen-in DC which are randomly distributed in the crystal due to strong pinning on 
defects in BSN. Figure 4(b)  shows the appearance of DC nuclei at about 230 "C, and figure 
4(c), taken at the same temperature, after several minutes, as figure 4 ( b ) ,  shows the 
growth of DC nuclei leading to thermal equilibrium configuration. Figures 4(d) and ( e )  
were taken at about 250 "C, separated by a time interval of several minutes, and figure 
4 0  at about 260 "C. 

The dynamic pattern evolution of DC was recently studied by Kawasaki et a1 [18] by 
means of computer simulation of model dynamic equations. The results reported for a 
special case of single q modulation agree in many respects with the ones reported above 
in BSN (figures 4(a)-Cf>). However, the nucleus (termed stripple in [18], and in the 
following used for the extended nucleus of DC, a pair of vortices connected by four DC 
as shown in figure 5) in BSN consists of four DC instead of three DC there. It was 
reported previously [ll] that the nucleus in BSN grows easily by horizontal extension, i.e. 
perpendicular to the modulation wavevector. This corresponds to the case without 
interactions between the vortex and the DC in [18]. As the droplet-like nuclei of DC 
(figure 4 ( b ) )  extend horizontally, they coalesce with each other (figure 4(c)) by head- 
on collision or general encounter of two stripples (refer to figures 7 and 8 in [18]). From 
figure 4 one finds the following phenomenon. The frozen-in DC are randonrly distributed 
in the crystal and start meandering near TL by thermal fluctuations. However, the newly 
created stripples come into existence with an average direction perpendicular to the 
modulation wavevector, and thus they intersect the frozen-in DC there. 

Figure 5 schematically illustrates one of the possible situations occurring around a 
line segment of a DC (AB in figure 4(a)) .  As a vortex of the stripple approaches the 
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sign (right) and opposite sign (left) of phase 

curved DC from one side driven by the misfit force, the upper outer DC of the stripple 
undergoes attraction from the lower part of the curved DC, on the assumption that 
there exists an attractive interaction between the DC over considerable distances, but a 
repulsive one at short distances (see the following section). Then the vortices in figure 
S(b) turn upwards in response to the attraction. The top DC of the stripple are still subject 
to a repulsive force with the curved DC, which is now deformed in a way to lower 
the interaction energy further at the expense of its domain-wall energy just before 
reconnection takes place (as shown in figures 5(c), ( d )  and (e ) ) .  After that the two 
vortices move away from the curved DC, and they may encounter other stripples. As a 
consequence of these processes, and due to meandering and collisions of DC under the 
influence of thermal fluctuations, no regular DC lattice exists in BSN. Thus, the wavy DC 
arrays shown in figure 4(e) were the only type observed. When the vortex of a stripple 
approaches a ferroelastic domain wall in BSN, the situation shown in figure 6 similar to 
that described in figure 13 in [ 181 may occur, as was already indicated [ 111. After crossing 
the domain wall the stripple reorients into the direction perpendicular to the previous 
one. 
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Figure 6 .  Crossing process of a stripple through a ferroelastic domain boundary (FB) taking 
place in the successive steps (a),  (b) ,  (c) and ( d ) .  The final stage of reorientation of the 
stripple is not indicated. 

According to the experimental observations presented, the following picture of the 
c-I transition is suggested. As the transition from the c phase is initiated, nuclei made 
up by four DC are successively nucleated in the homogeneous c phase and the crystal is 
gradually filled up with clusters of DC. It takes a very long time for the system to reach 
the final equilibrium state during the relaxation process. As the number of DC in the 
crystal increases and the equilibrium state is approached, a rough and wavy DC array is 
formed, with an average direction of the DC lines perpendicular to the modulation 
wavevector. In the following a thermodynamic interpretation of these features is pre- 
sented based on a phenomenological Landau approach. 

4. Qualitative theory of c-I transition 

Following the experimental results available, the I phase in BSN exhibits a wavy DC 
array, which may be considered as a multi-soliton lattice near TL, and the processes 
during c-I transition involve nucleation or annihilation of DC. Thus the phase-modu- 
lation-only (PMO) approximation of Landau theory is likely to account for the exper- 
imental results. 

The explicit form of BSN free-energy expansion as well as its qualitative consequences 
on its static properties have already been given by Toledano et af  [ 191 and Schneck et af  
[6 ] .  In order to explain the elastic properties of incommensurate BSN, three types of 
corrections were considered by Errandonea et a1 [20]: a coupling between the strains 
and the fluctuations of the modulus of the order parameter (oP), a dispersive coupling 
between the strains and the amplitude mode, and the influence of defects. In this section, 
we shall mainly discuss the interaction between the DC and the phenomena occurring 
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during the lock-in (or c-I) transition within the framework of the Landau theory and 
within the PMO approximation. 

For a given modulation vector k, the symmetry properties of the OP are described by 
an irreducible representation r m ( k * )  of the high-symmetry space group Go, where k* is a 
star of vectors of the first Brillouin zone containing the modulation vector k. The index 
m specifies a small representation of the little group Gk associated with k. According to 
Toledano et a1 [6], the star in BSN contains four non-equivalent vectors +ki and 
+k:, where 

k; = )(1 + 6)(a*  + b*)  + c*/2 
k; = i(l + S) (a* - b*)  + c*/2 

which are incommensurable with the reciprocal-lattice periods of the symmetrical phase. 
For the components of the OP we take the normal coordinates Q2(v) ,  
Qz(kr).. Here we have already simplified the problem from originally four complex 
amplitude fields to two by taking complex-conjugate amplitudes for +ki and -k i ,  and 
similarly for +k/ and -ki . Using the notation Q, = pe@, Q2 = p’eiP’, where ( p ,  q )  and 
(p’ , q ‘ )  are coordinate-dependent, the average free-energy density f is given by [6] 

f=I(.f; +f; + f ; ) d 3 r / J d 3 r  

where 

+ &P3p2p’2 + A (p2 - av + p’2 Z) 

+. K1 i p 2  (z)2 + (E)2 + p’2 (?J2 + (32] 
+ K2 [pz (z)2 + (%)2  + p ’ 2  (%I2 + (32] 

ax 8Y 

(3) 

This representation applies to the reference frame whose orientation is adjusted to the 
principal crystallographic axes of the orthorhombic phase, i.e. x ,  y and z coordinates 
correspond to the orthorhombic axes ao, bo and co. Here f h  is the usual free-energy 
expansion applying to the bare OP, i.e. uncoupled to strains. The first four terms in (3) 
correspond to the homogeneous OP expansion, the fifth term with the A coefficient is the 
‘Lifschitz invariant’, which favours the onset of the I phase, and the last two terms favour 
the onset of the c phase. In (4) f; is the elastic energy, where e,, e2, e3,  e4, e5 and e6 
correspond to the components of the deformation tensor U,,, u22, u33, ~ 2 3 ,  ~ 1 3  and u12, 
respectively, which are expressed in terms of the elastic displacement vector U according 
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to the relation 

The coefficients CI1, C22, . . . represent Hooke’s tensor in the notation of Voigt. The last 
terms o f f ;  represent anharmonic interactions. In (5) f ;  contains the lowest-order 
coupling terms between the strains and the OP amplitudes. Up to now the coupling terms 
between the OP phases and the strains have not been considered in the free energy of the 
I phase. Indeed, when a Lifschitz invariant [21] exists, it will necessarily give rise to 
coupling terms with totally symmetric strain components. In BSN the contribution of 
these coupling to the free energy will be of the form 

We now consider first the phase diagram of the incommensurate BSN in the approxi- 
mation where no harmonics of the basic periodicity are taken into account. The free 
energy of the I phase becomes 

f ,  = h ( p 2  + p t 2 )  + tP l (p4  + P ’ ~ )  + iP3p2p t2  (3a) 

and does not depend on the phase variables cp and 9’. Thus, two possible phases are 
obtained by minimising the free energy (3a) for a < 0 (i.e. for T < TI): (i) p2 = (-a/ 
P l ) , p t 2  = Oorp2 = 0 , p t 2  = (-a/P1);(ii)p2 = p t 2  = -&/(PI + P3).Thetwophasesare 
incommensurate. Phase I corresponds to non-zero values for OP components associated 
with a single pair of opposite wavevectors, respectively ( + k )  or ( k k ’ ) .  The term 
.(el - e*) (p2  - p f 2 )  in ( 5 )  shows that in phase I the spontaneous strain (el - e2)  is non- 
zero, and that it has opposite values in the two possible states. Phase I is an I phase 
modulated in a single direction and it involves ferroelastic domains differing in the 
direction of the modulation as well as in the value of the spontaneous strain. Phase I1 
corresponds to the freezing-in of all the vectors of the star of wavevectors k * .  It is 
incommensurately modulated along bothx andy directions. There exists no spontaneous 
strain and the average symmetry is that of the N phase. 

This phase diagram is consistent with the recent studies of the coexistence of two I 
phases in BSN between TL and TI [22,23]. One of them ( lq  phase) is modulated along a 
single direction a. (i.e. x), with a well oriented DC pattern above TL. The modulations 
in the two kinds of ferroelastic domains are perpendicular to each other, and lock into 
a c phase at TL. The increase of the incommensurability around TL can be related to the 
increase of the density of DC [SI. The other one (2q phase) is modulated along both a. 
and bo (i.e. x andy) directions, and develops from the l q  phase above TLon heating. At 
TI the 2q phase (i.e. phase 11) is stable, because its average symmetry is that of the N 
phase. On cooling, l q  phase (i.e. phase I) appears and the 2qphase becomesmetastable, 
due to the increase of the spontaneous strain, which stabilises the l q  phase and suppresses 
the 2q phase. Therefore, near TL only the l q  phase is observed. In the following, we 
study the basic physical phenomena of the I phase in BSN near the c-I transition, where, 
as mentioned above, only phase I is stable. Thus, we assume that p # 0, p’ = 0 (or 
equivalently p’ # 0, p = 0). 
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Neglecting the coupling between the OP moduli and the strains, the free-energy 
density below TI assumes in BSN a form within the PMO approximation of the type 

Heref, is obtained fromfh by taking p # 0, p' = O;f l  is the same asf; modulo the cross 
term CI3(el + e2)e3, which will only complicate the calculation but not affect the main 
results; andf2 has the form 

We ignore for the time being the y dependence of the phase Q,(x,  y ) .  This is based on 
the assumption that K2 % K1 holds in (3), and implies that the nucleation phenomena 
related to stripples cannot be described within such an approximation, because no 
vortices can be described without Q, having y dependence. The assumption K2 % K1, 
however, favours a DC orientation perpendicular to the modulation wavevector k and 
suppresses curved DC. After minimisingfo with respect to the variable q ( x )  we obtain 
the following sine-Gordon equation: 

which is known to have solitary solutions Q,,(x) [24]. 

[24] in the form 
By means of the soliton formalism, the free-energy densityfo can be approximated 

/ f o d 3 r / l d 3 r - f c =  -oA(T- Tc)no +40noe-"'"o (9) 

wherefc is the free-energy density of the c phase,fc = fo( Tc), no and l / w  are, respect- 
ively, the number of solitons (DC) per unit length and the width of the soliton, andA and 
o are suitable constants. The coefficient of no in the first term of (9) determines the bare 
free energy per soliton. This free energy is positive in the c phase, vanishes at the 
transition temperature Tc and is negative in the I phase and thus describes the formation 
of solitons in the I phase. Tc corresponds roughly to TL in table 1, but will be modified 
by strain and solitons (see (17) below). The second term in (9) determines the repulsive 
interaction energy of solitons. This term is positive and is a consequence of 'excluded- 
volume' effects of solitons. Thus, the solution obtained in the PMO approximation 
describes a continuous transition from the I to the c phase. Note that 4 2 A(T - Tc) is 
required in (9) in order that the free energy is bounded from below for no+ m. In case 
this inequality cannot be satisfied, (9) must be supplemented by additional positive terms 
of order nl+', E > 0 ,  in order to stabilise the system. The precise value of no is determined 
from the requirement 

(9a) 

which under the restrictive condition given above ensures a2f/an21,, > 0 and therefore 
thermodynamic stability. 

We briefly make a few remarks with respect to the two-dimensional sine-Gordon 
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equation obtained from 

and being of the form 

a 2 q  a 2 q  
a x t 2  ayr2  
- + - + sin(4q) = 0 

where we used the rescaled variables 

Equation (sa) has the two simple types of soliton solutions q l  = ~ ( x )  and q2 = ~ ( y )  
governed by (8) and a similar equation with x replaced by y ,  respectively. Solutions of 
(8a) with a dependence on x and y are responsible for the stripples and vortex structure 
observed. This can be seen as follows. A vortex solution of (sa) with the third term 
ignored is 

The ui represent the vortex strengths. Observe now that V ( x ,  y )  is also a solution of (sa) 
in the neighbourhood of V ( x ,  y) = nn/4, n = 0 , 1 , 2 , 3 , 4 , 5 , 6  and 7 .  However, f&’) will 
favour phase angles q, corresponding ton = 1,3,5 and7. Accordingly the map d :  V +  q 
which deforms q ( x ,  y )  into ~ ( x ,  y) will impose onto V an additional soliton structure at 
lines originating from the vortices, where n changes by k 2 .  These lines correspond to 
the solitons of (8) and represent the four-fold stripples in figure 3. The fact that the 
stripples grow perpendicular to the wavevector k (see e.g. figure 3 )  is a consequence of 
the rescaling from x’ and y ’  to x and y, respectively, with K 2  S K I .  A uniform stripple 
in the coordinates of (sa) is stretched along they direction, which is perpendicular to k .  
For a qualitative treatment of (sa) see Holz [25].  Let us point out that a coupling to 
strain will lead to an additional deformation of q ( x ,  y) but will not change its topological 
structure. 

Now we come back to our main topic and take the influence of the coupling between 
the phase of modulation and the strains into account. From (7) we obtain the set of 
Euler-Lagrange equations: 
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For the sake of simplicity we have ignored the z dependence of the phase variable Q, . 
Presumably, these equations cannot be solved analytically in general. 

Formally the set of equations (10) may be solved by using the elastic Green function 
obeying suitable boundary conditions for the homogeneous part of ( lob)  to (10d) and 
expressing the solution in the form 

u,(r) = d3r’GeB(r,  r’)fs(r‘). J 
Herefg(r) represents the right-hand side of equations (lob) to (10d) respectively with 
p = x, y ,  z .  Putting u,(r) into ( l o a )  yields an integro-differential equation for Q,. In a 
representation corresponding to (sa) one obtains 

a2Q, d2Q, gxx(rrr ,  r’)  - + 2gxy(rr’, r’) - axrr2 axri ayrr 

+ sin(4q) = 0. (8b) 

Here the coefficient functionsgmP(rr’, r’) are obtained from the Green function over two 
partial differentiations. Because GWp(r, r r )  - lnlr - r’l for the two-dimensional problem, 
the third term in (8b) provides for a strongly non-local coupling with possible log-type 
divergences. The solutions of (8b) will be of the same topological type as q ( x ,  y )  given 
earlier subject to the deformations produced by the two last terms in (8b). For the case 
Q,(x,  y )  = Q,(x)  a considerable simplification arises, because (8b) will reduce to (13). 

Using now the simplifying assumption that the modulation in BSN occurs only in the 
x direction, i.e. Q, = Q,(x) ,  we look first for a solution of (10) based on the ansatz [3] 

U ,  = + V l X  + V 2 Y  + 732 + V 4  

uy = q x )  + 51x + E2Y + E 3 2  + E 4  

U ,  = C,(X) + c1x + 52Y + 532 + 5 4  

where the linear and constant coordinate terms are used to satisfy boundary conditions 
imposed on the system. Inserting (11) into (10) yields 

(12) 

Since (13) has the same form as (8) we again obtain the wall-type picture for Q, and hence 
also for U,. 

In order to determine the constants q l ,  . . . , C4 from the boundary conditions we first 
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exclude global translations and rotations of the system, implying 

r 4  = E 4  = f 4  = 0 1 (V X U) d 3 r  = 0. 

The remaining constants follow from the equilibrium condition between the internal 
and external stress ae imposed on the system 

From (14) we obtain using the notation 

(p = 4 in BSN), where An = n+ - n- represents the density difference between positive 
and negative DC, 

1 n 
f 3  = - (.:I - Y 3 P 4  

c 3 3  

This implies that the homogeneous deformations (el, e2,  e3) depend on the density 
difference An of solitons, but not on their space distribution in the system. Substituting 
ux, uY, U, into (4) modulo the cross term C13(e, + e2)e3 and (6a) and adding the free 
energy corresponding to (13) we obtain for the free-energy change in the case of zero 
external stress 

AfI = fI - fc = -a'A'(T - T&)n + 4a'n e-"'l" 

- D(An)2  + A;(An)3 + Ai(An)4 

where n = n+ + n- and 

The first additional term -D(An)2 in (16) describes an attractive interaction between 
the DC mediated by the strain, whereas the term Ai (An)3  breaks the symmetry with 
respect to An S 0. The term A;(An)4 stabilises the system with Ai > 0. Equation (16) 
indicates that DC of the same sign are mutually attracted and consequently the distance 
between DC remains finite at the transition point, which may lead to a discontinuity of 
the c-I transition, in agreement with the experimental results observed in BSN. Note that 
theprimedcoefficients o',A' ,  TL andw' aresupposed to becomputedfromthestatistical 
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mechanics of the sine-Gordon model with coupling constants given by (13), sup- 
plemented by inhomogeneous strain terms, similarly to the way in which (9) is computed 
from (8), and n ,  is computed from an equation analogous to (9a), where 4 2 A’(T  - 
T & )  has also to be satisfied. Extrema1 solutions to (16) are obtained from dAfI/an+ = 
aAfI/dn- = 0. For the sake of simplicity we will take n = An. 

From the condition that the free energy in the I phase equals that in the c phase, and 
setting n = An,  we obtain 

-a’A’(TL - T&)n + 4a’n - Dn2 + Ain3 + &n4 = 0. 

Near the transition temperature, we have w’/n + 1 and n 
transition temperature TL 

1; thus we obtain the C-I 

where nL is the soliton density at TL. Now the characteristics of the c-I transition may be 
shown by plotting fI - fc versus n ,  at different temperatures, t = ( T  - TL)/(  T& - TL), 
as presented in figure 7. On decreasing the temperature from the I phase, the system 

Figure7. Schematicplot of free-energy difference 
fi - fcfrom(16)asafunctionofthe~c(orsoliton) 
density a, at different temperatures. The par- 
ameter t is the reduced temperature. 

enters the c phase at TL, with a discontinuous change of n. Conversely, on increasing 
the temperature from the c phase, although the free energy favours the I phase, the 
nucleation of DC requires a certain thermal activation due to the positive energy of DC 
at T < TL. This leads to a thermal hysteresis. In consideration of the influence of thermal 
fluctuations, there should be coexistence of both c and I phases at TL < T < TL. 

We would like to point out that Bjelis and Barisic have developed a non-linear model 
for the hysteresis in tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) based on 
equations for phase and amplitude solitons [26]. Translated into our model, such an 
analysis would require, instead of Ql(k) and Q 2 ( k ) ,  as explained below (l), use of two 
fields Q,,, = p ,  e@* corresponding to two phase variables p- cp+ - cp- and 
8 - tan-’(p,/p-). Although such a theory may also apply to the present system we have 
not worked it out so far. 

In general, hysteretic phenomena are connected with first-order phase transitions 
and the latter with nucleation phenomena. It seems reasonable to assume that the 
nucleation of stripples drives the discontinuous phase transition at TL and that such 
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processes are also responsible for the hysteretic effects and chaotic state of DC patterns. 
The one-dimensional analysis presented in this work may be considered as a type of 
mean-field approximation mainly dictated by the wish to reduce the complexity of the 
theory. 

For the one-dimensional problem Barisic and Batistic have developed a theory of a 
first-order c-I transition in the presence of charged solitons interacting via l /r  Coulomb 
forces [27] .  In the present theory DC are not charged but the strain provides for a long- 
range interaction. In the one-dimensional sine-Gordon equation (13) this is not the 
case, because coupling to strain yields a change of the coupling constant such that 
the width of solitons is decreased. The attractive thermodynamic interaction between 
solitons mediated by strain and described by the third term in (16)  is a consequence of 
long-range interaction and the boundary conditions imposed on the strain field, as can 
be seen from (lob) in the form 

a2ux/ax2 = -(y1p2/C11) a 2 q / a x 2 .  (10e) 
Because the general solution of this differential equation for given q ( x )  is the sum of a 
particular integral and the general homogeneous solution U,“ = v l x  + q 4 ,  the boundary 
conditions play an important role in fixing U,”. The solitons act as sources of the Coulomb- 
like strain field. Bound states of solitons as in breathers are a consequence of short-range 
interaction. Long-range interaction as considered in [27] appears also in ( s a )  and is of a 
logarithmic type (see e.g. Holz [25]) .  Similar arguments apply to (8b), where the integral 
operator will yield an additional attractive interaction between solitons. 

Concerning the attractive interaction of DC the following additional remarks will be 
made. Although the left-hand sides of (loe) and (8) involve one-dimensional Laplace 
operators, the effect in both equations is different. Owing to the right-hand side in (8) 
solitons are topologically stabilised and attract or repel each other over short range when 
they have the opposite or same sign, respectively. Furthermore, independent of the 
boundary conditions on the q variable, there can be no solution of the linear type q = 
(2n/p)Anx + qo leading to a (An)* term in the free energy. In (loe) this is not the case 
and one obtains a long-range Coulomb-like interaction between sources and sinks whose 
force is independent of distance. This force will be attractive for solitons of the same 
sign and repulsive for solitons of opposite sign. Because a wavy DC array consists 
essentially of solitons of the same sign, the situation is similar to that in gravitationally 
bounded systems, where the hard core repulsion (or centrifugal force) keeps the system 
from collapsing. A qualitatively different situation applies to the two- or quasi-two- 
dimensional problem, because there already the soliton equation (8a) provides for long- 
range interaction between vortices (vortex loops) and is of the ln(l/r) type, whereas 
interactions among DC will depend on their shape and are of short range. However, 
when strain is taken into account, DC will interact over long range. 

We recall that we have neglected the coupling between the strains and the moduli of 
the OP given by f ;  in ( 5 ) ,  in the calculations presented above, which however does not 
affect the qualitative results. This coupling will give an additional contribution to the 
spontaneous value for (el - e2) representing the breaking of the macroscopic symmetry 

(el - e2) d3r,/J d 3 r  = - P 2  
c11 - c12 

From (18) it follows that the spontaneous value for (el - e2) is proportional to the DC 
density An; hence it develops a discontinuity during the lock-in transition, and a large 
thermal hysteresis similar to that derived for n ,  in agreement with the experimental 
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results on the measurement of birefringence (n, - nb) [28]. One also shows that the 
application of external pressure does not remove the discontinuity at the lock-in 
transition, but only changes the value of T&. For a sufficiently large anisotropic stress 
( u : ~  - a&), the I phase can be suppressed completely, which is consistent with the 
experimental measurement of birefringence (n, - nb) under the application of a uniaxial 
stress (along bo) in BSN (figure 3 in [29]). 

It has been noted that in incommensurate insulators defects stabilise the incom- 
mensurate structure, destroy the long-range order in the I phase, enhance the chaotic 
state near the lock-in transition and increase the thermal hysteresis [30]. The main 
structural defect considered in BSN is represented by vacancies at the sodium sites [28]. 
The interaction between the defects and the incommensurate modulation results in the 
following remarkable features: a large thermal hysteresis affecting all physical properties 
occurred each time the temperature trend was reversed at any temperature within the I 
phase [6]; the striking memory effects [28]; and the existence of an incomplete lock-in 
phase below TL. 

We would like to point out that Lederer et al[31] have developed a theory of memory 
effects that is characteristic for I modulation systems and invokes the formation of a so- 
called defect density wave. The defect density wave is formed under ‘slow experimental 
conditions’ allowing the defects to diffuse and decorate the modulated structure at the 
temperature of measurement. Memory effects of all kinds are then a consequence of an 
impurity locked in the c phase. Effects of this kind may also play a role in the present 
observations because of the existence of a large number of mobile point defects (such 
as sodium vacancies [28]) and of defects generated by electron irradiation during obser- 
vations, which may diffuse and pin the DC. It is worthwhile to point out that recent 
studies [22,23] show that the large thermal hysteresis, complex memory effects and the 
slow relaxation in BSN are related both to the coexistence of the l q  and 2q phases and to 
the interaction between modulation and mobile defects. Accurately, the slow relaxation 
of the linewidth and intensity of satellite reflections and of the birefringence [12] are 
attributed to the gradual change of the system between the l q  and 2q phases. Such 
processes take place very slowly (typically in two or four days [12]) due to the diffusion 
of mobile point defects which pin the modulation wave. During a thermal cycle a large 
hysteresis of physical properties occurs because of incomplete relaxation. A similar 
mechanism accounts for the memory effect. 

The strong pinning of DC by defects in BSN leads to the occurrence of a spatially 
chaotic state near T, (figure 4) consisting of an inhomogeneous distribution of DC in the 
crystal, having stochastic shape. 

A characteristic feature of DC in the I phase is that they do not form a regular soliton 
lattice but a wavy DC array. In the one-dimensional model discussed we have ignored 
this property. Obviously the defects in a regular vortex lattice are the vortices that 
nucleate in the form of stripples, and once the stripples become unbounded the regular 
DC array will be destroyed. The situation is quite similar to the melting of a crystal, which 
is driven by the nucleation of pairs of dislocations in two dimensions. We conjecture 
that the wavy DC array is a type of vortex plasma, which however does not destroy the 
overall orientation of the soliton lattice but only its long-range positional correlation. 
The situation is then similar to liquid-crystalline systems, which have a finite orientational 
order parameter. A theoretical analysis of the wavy DC array may be based on (8a), fo 
and the ratio K1/K2.  The disappearance of the wavy DC array and its replacement by an 
isotropic phase also requires an analysis of the amplitudes p and p’ and the mutual 
interaction between the vectors in (1). 



2622 Xiaoqing Pan et a1 

5. Conclusions 

In conclusion we have reported an experimental study of the dynamic evolution of DC 
during the C-I transition in BSN, and presented a qualitative discussion of it on the basis 
of the phenomenological Landau theory. It has been found that the interaction of DC of 
the same sign at large distances is attractive ( -D(An)’ ) ,  but is repulsive independent of 
their sign at short distances (4a’An e-w’’An), and that frozen-in DC become meandering 
and collide with their neighbours to reduce the DC density at a temperature even below 
the lock-in transition under the influence of thermal fluctuations. A transient metastable 
state (or chaotic state) with an inhomogeneous distribution and stochastic conformation 
of DC was observed with successive nucleation of DC in the early stages of transition, 
forming a wavy DC array. The wavy DC array is a consequence of the network structure 
formed from a set of vortices interconnected by DC with a preferential direction per- 
pendicular to modulation. DC loops with high density of DC are formed at high tempera- 
ture. In the light of a phenomenological Landau theory, the coupling between the strains 
and the phase of OP plays an important role in incommensurate BSN. It results in an 
attractive interaction between DC and a discontinuity in the physical quantities (n ,  
e l  - e2 ,  n, - nb, etc) during the c-I transition, which is qualitatively in agreement with 
the experimental results available. 
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